Seems like the guys that are having trouble getting storage up to temp turn the three position pump down to lowest setting and then all is well
Yeah, mine is set up this way, so I'm confident it works correctly and reliably. There's some details in this recent thread:Got cha....Curious if anyone has actually done it this way? It makes sense....
For example: 4.7 gpm comes from storage at 100 degF. It mixes with 16 gpm of recirculation flow at 185 degF. Mixed flow of 20.7 gpm enters boiler at 165.7 degF. Rise through boiler is 19.3 degF, approximately the 20 degF required.
4.7 gpm leaves the top of boiler and goes to top of storage with deltaT of 85 degF, having absorbed heat at a rate of 200005 btu per hour. The other 16 gpm goes back to the return port to mix with the 4.7 gpm coming from storage. The boiler does not see the 85 degF deltaT, it sees 19.3 degF deltaT.
What I see is that this works as described with low temp return water from storage, but as storage temperature rises gpm flow to storage has to increase, that is, high flow, to deliver boiler output without idling.
It looks like the mixing valve wouldn't be doing anything in this case, one way or another all the boiler recirculation flow will come back to the boiler whether or not all, some, or none of the flow short circuits through the mixing valve bypass leg.How about this idea? Single speed 20 gpm pump for boiler circulator. Comes on when the boiler is started, TCV limits return temps at start-up. Variable speed pump to storage kicks on when return temps hit 170F and maintains this temp. Draws 4.5gpm at 190F at full boiler output and reduces flow as boiler output falls to keep boiler output at 190F and return temp at 170F. WIll this work? I think I can use a taco 007 for the boiler circulator and a bumblebee for the storage pump using the temp set point. Any comments?
However, if you move the P2 sensor to sense the temperature going to storage then you could control temperature to storage and let the mixing valve worry about return temperature, plus P1 would give you plenty of flow through the boiler to keep deltaT through the boiler down around 20 degF. So yeah, if you move the sensor for P2 I think your drawing satisfies all your requirements nicely.Thanks for the reply....
I see what you mean about the TCV. Have to rethink that.
A temperature controlled pump can work in two opposite modes, direct-acting and reverse-acting, a.k.a., heating and cooling. In heating mode more flow makes the sensor see increasing temperature, in cooling mode more flow makes the sensor see decreasing temperature. As far as I can tell the darn HEC-2 only offers heating/direct-acting mode. But you need reverse-acting since the more P2 pumps the lower the temperature to storage.I thought the taco bumblebee would control to a set temperature? If so, and you set it to control a 170F boiler return, wouldn't it simply vary the injection flow to keep the return temp constant? It seems this is the easiest way to control this system.
I am not following the one pump suggestion: don't you need one pump to circulate the water from the boiler around a loop at 20gpm and another to inject to storage?
Exactly. Bumblebee would be perfect if it did reverse-acting.If I move the sensor for P2 to downstream of P2, then if the boiler starts to output too cool of water, P2 will pump less and return temp at the boiler will rise, causing the boiler out to increase and the sensor after P2 sees increasing temp. Doesn't this also require a decreasing flow, increasing temp control?
It seems that indeed, I need a pump that modulates flow to meet a temperature, pumping less to increase temp and pumping more to lower temps.
Thanks, I will look into PID controllers...Do you have a commercial product in your system you could recommend?
Right, that's all it amounts to. In fact in this particular application maybe all you need is a digital aquastat like the Ranco ETC-111000-000 Digital Temperature Controller. You could play with the hysteresis to get a reasonably long cycle and be done with it for $60. Pump comes on at 185 degF and goes off at 182 degF, for instance.So basically, one of these controllers would be wired to the pump through a relay and set to turn the pump on and off to control a temp sensed by the thermocouple located at the control point?
Pump on, pump off, all through the burn cycle.So with this you do not need a variable speed pump, correct?
You might think so, but circulators have low starting torque and small angular moments. They can be turned on and off once a minute for years on end. However relay contacts are supposedly only good for a 100,000 cycles at rated amperage, though they typically do much better.Isn't turning the pump on and off hard on the pump?
Sure, look at the Taco 00 variable speed stuff for instance, just more expensive.Couldn't this be used with a variable speed pump to simply change pump speeds as necessary?
Right.Do I understand correctly how this would be set up:
I would use this to control the pump flow to storage to vary the boiler return temp to get a set 190F boiler out, sensing on the boiler out. As my delta T dropped through the boiler from say 20F at full output (170F return) to say, 5F (185F return at 50,000 btu/hr out) as the burn was near the end, the pump to storage would be cycled by the pid to pump from 4.5 gpm down to 1 gpm.
I don't use a TCV on mine, but I have to control return temperature instead of supply temperature. Without a TVC, if you control supply temperature with injection flow then you can flood the boiler with cool water and the supply sensor won't see it until it's too late. So I control return temperature in lieu of having a TVC, and I get pretty good supply temperature control as a byproduct since when the boiler is working in steady state supply temperature is pretty constant relative to return temperature. But at the end of the burn as boiler output falls off supply temperature falls off.If I had it set up so that the boiler pump turned on at boiler start up and the storage pump turned on at 170F, would I even need the TCV?
Right.
I don't use a TCV on mine, but I have to control return temperature instead of supply temperature. Without a TVC, if you control supply temperature with injection flow then you can flood the boiler with cool water and the supply sensor won't see it until it's too late. So I control return temperature in lieu of having a TVC, and I get pretty good supply temperature control as a byproduct since when the boiler is working in steady state supply temperature is pretty constant relative to return temperature. But at the end of the burn as boiler output falls off supply temperature falls off.
Ours is a conventional boiler-adjacent-to-storage setup, tanks are four feet away piped with 1.5" black iron. The piping is over-sized to allow gravity-flow power-failure heat dump protection. System deltaT runs about 54 degF and it takes about five hours to take 750 gallon tanks from 107 degF to 161 degF since the boiler only puts out about 67500 btu per hour. So average flow for one lap is about 2.5 gpm, which jibes with my stopwatch on the 15-58 on low speed that normally runs about 27 seconds out of a 80 second cycle, or one third of 7.5 gpm.What flow rates to storage are you seeing? How far is your boiler from the storage tank and what size pex do you use?
Seems I can return the 1-1/2" pex I already bought. Seems for 5gpm or so, I could get by with 3/4" pex to and from storage....
Be careful, it looks to me like the 007 curve is all wrong for that circuit.I did find a decent deal on a 007 variable speed with set point control that would work, I may go with that.
We use essential cookies to make this site work, and optional cookies to enhance your experience.