
Exploded View of the F 400 Castine

Draw.no. 4-3770

USA

Parts list for the F 400 **Castine** woodstove

Consult your dealer for part numbers and replacement parts.

- **Ashlip** 1
- Left door 2
- Right door 3
- Right side panel 4
- Front panel 5
- 6 Top casting
- Upper back panel 7
- Smoke outlet 8
- Back panel 9
- 10 Left side panel
- Leg (long leg) 11
- Upper bottom panel 12
- Front door shaft (exterior) 13

Nut

Spring

- Right burn plate 14
- Right glass panel 15
- 16 Left glass panel
- Air wash manifold 17
- 18 Top baffle (stainless steel)
- Baffle cover (cast iron) 19
- Air inspection cover 20
- 21 Rear burn plate
- Fire brick (3) 22
- **Bottom** grate 23
- Left burn plate 24
- Lower bottom panel 25
- 26 Ashpan housing
- Ashpan
- Air slider/valve 27
- 28 Air devider
- Door pins 29
- Air control lever (chrome) 30 Allen head screw
- Ashpan door 31
- Ashpan door pin
- Ash door handle 32 Loop handle Set screw Latch

Spring

Nut

Not shown

Appendix A

Alternate floor protection

All floor protection materials must be non-combustible ie. metal, brick, stone, mineral fiber boards). Any combustible material may not be used.

The easiest means of determining if a proposed alternate floor material meets requirements listed in this manual is to follow this procedure.

R-value = thermal resistance

k-value = thermal conductivity

C-value = thermal conductance

- 1. Convert the specification to R-value;
 - a. If R-value is given, no conversion is needed.
 - b. If k-value is given with a required thickness (T) in inches: R=1/k X T.
 - c. If C-value is given: R=1/C.
- 2. Determine the R-value of the proposed alternate floor protector.
 - a. Use the formula in Step 1 to convert values not expressed as "R".
 - b. For multiple layers, add R-values of each layer to determine overall
- 3. If the overall R-value of the sustem is greater than the R-value of the specified floor protector, the alternate is acceptable.

The specified floor protector should be 3/4" thick material with a k-factor of o.84. The proposed alternate is 4" brick with a C-factor of 1.25 over 1/ 8" mineral board witha k-factor of 0.29.

Step A. Use formula above to convert specifications to R-value. R=1/k X T = 1/.84 X .75 = .893

Step B. Calculate R of proposed system.

4" brick of C-1.25, therefore R brick = 1/C = 1/1.25 = 0.80.

1/8" mineral board of k = 0.29 therefore

R mineral board = 1/.29 X 0.125 = 0.431

Total R = R brick + R mineral board= 0.8 + 0.431=1.231

Step C. Compare proposed system R = 1.231 to specified R of 0.893. Since R is greater than required, the system is acceptable.

Definitions:

Thermal conductance =

$$C = \underline{Btu} = \underline{W}$$

$$(hr)(ft^2)(F) \qquad (m^2)(K)$$

Thermal conductivity =

$$k = \underline{Btu}$$
 = \underline{W} = $\underline{(Btu)}$
 $(hr)(ft^2)(F)$ $(m^2)(K)$ $(hr)(ft)(F)$

Thermal resistance=

$$\begin{array}{lll} R = & \underline{Btu} & = & \underline{(m^2)(K)} & = & \underline{(Btu)(inch)} \\ (hr)(ft^2)(F) & & W & (hr)(ft^2)(F) \end{array}$$

THE JØTUL F 400 CASTINE WOODSTOVE REQUIRES FLOOR PROTECTION WITH A MINIMUM INSULATING R VALUE OF 0.5.

ALCOVE INSTALLATION REQUIRE A MINIMUM R VALUE OF 1.6. (IF A UL/ ULC or WHI LISTED HEARTH PAD IS NOT USED.)